In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] raggio r, per il volume V della sfera si ha
V = 2 ∫∫C √‾‾‾‾‾‾r2 − x2 ‾‾‾− y2‾‾‾‾ dxdy = ∫∫∫S dxdydz.
I. di Lebesgue. - È una generalizzazione del concetto di i. di una funzione reale di punto. L’importanza della generalizzazione sta nel fatto che l ...
Leggi Tutto
misura di Wiener
Luca Tomassini
Una misura di probabilità sullo spazio C([0,1],ℝ) delle funzioni continue a valori reali sull’intervallo chiuso [0,1] definita come segue. Siano 0⟨t1⟨...⟨tν≤1 punti arbitrari [...] di C([0,1],ℝ) generata dai C(t1,...,tν;A1,...,Aν). Sia ora F:C([0,1],ℝ)→ℝ un funzionale lineare a valori reali misurabile (nel senso di Lebesgue) rispetto alla misura μϬ. In maniera analoga alla procedura utilizzata per definire dalla misura di ...
Leggi Tutto
trasformata di Laplace
Luca Tomassini
Nozione introdotta da Pierre-Simon de Laplace nel suo famoso Théorie analitique des probabilités (1812) e da lui utilizzata per risolvere equazioni differenziali [...] che Res>Res0. L(s) è detta trasformata di Laplace-Stieltjies di f(t). Se invece
[2] formula
è integrabile secondo Lebesgue nell’intervallo [0,r] per ogni r>0, allora
[3] formula
è detta trasformata di Laplace di φ(t). Data la trasformata ...
Leggi Tutto
integrabile
integràbile [agg. Der. del lat. integrabilis] [LSF] Che può essere integrato, sia nel signif. matematico (→ integrale), sia per significare che si tratta di cosa che può essere aggiunta o [...] f tale che esista l'integrale ∫C f dC; a seconda della natura di questo integrale si parla di funzione i. secondo Lebesgue, secondo Riemann, ecc.: v. misura e integrazione: III 3 f, 4 a. ◆ [MCC] Sistema i.: un sistema meccanico hamiltoniano tale che ...
Leggi Tutto
misura
misura [Der. del lat. mensura, dal part. pass. mensus di metiri "misurare"] [LSF] Il valore di una grandezza, espresso come rapporto tra la grandezza data e un'altra grandezza della stessa specie [...] , per indicare generalizzazioni dell'operazione di integrazione in campi della matematica superiore: m. secondo Peano-Jordan, secondo Lebesgue, ecc., alcune delle quali sono ricordate più oltre, mentre per altre si rinvia al nome di qualificazione ...
Leggi Tutto
Variazioni, calcolo delle
Giuseppe Buttazzo
Gianni Dal Maso e Ennio De Giorgi
SOMMARIO: 1. Introduzione. 2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] Lp (Ω) è l'insieme delle funzioni u definite su Ω tali che ∣u∣p sia integrabile (nel senso di Lebesgue) su Ω. La convergenza in Lp (Ω) è definita nel modo seguente: un converge a u in Lp (Ω) se l'integrale ∫Ω ∣ un (x) - u (x)∣p dx tende a zero ...
Leggi Tutto
matematica Nella teoria degli insiemi, dato un insieme A, si dice che una famiglia {Ta} di suoi sottoinsiemi costituisce un r. di A, se l’unione degli insiemi Ta dà l’insieme A, cioè se ogni elemento di [...] e la famiglia {Ta} è, per solito, una famiglia di sottinsiemi aperti di X: il r. si chiama allora brevemente r. aperto. Numero di Lebesgue di un r. aperto di uno spazio metrico X è il più grande numero reale positivo δ tale che ogni sottinsieme di X ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] un concetto che nella topologia degli spazi euclidei è utilizzato nel teorema di Heine-Borel (noto anche come teorema di Borel-Lebesgue). In un qualsiasi spazio topologico, per ricoprimento aperto di un insieme S si intende una famiglia F di insiemi ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] b] e lo spazio C1([a,b]) delle funzioni dotate di derivata prima continua su [a,b].
In base a un classico teorema di Henri-Léon Lebesgue (1875-1941), ogni funzione u di AC([a,b]) è derivabile in tutti i punti di [a,b], eccettuato al più un insieme di ...
Leggi Tutto
Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] le sue componenti covarianti. ◆ [ALG] Teorema di esistenza di R.: v. Riemann, superfici di: V 4 c. ◆ [ALG] Teorema di R.-Lebesgue: v. trasformazione integrale: VI 299 c. ◆ [ALG] Teorema di R.-Roch: v. superfici di Riemann: V 5 c. ◆ [MCF] Variabili di ...
Leggi Tutto