La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] L(F)≠0, F ha un punto fisso.
Nel 1925 Emmy Noether (1882-1935), l'eminente algebrista di Gottinga, spiegò come gli invarianti numerici della topologia combinatoria si potessero organizzare meglio come invarianti di certi gruppi, i gruppi di Betti. I ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] interesse va ben oltre quello del problema di Hilbert e si innesta nella teoria dei gruppi di Lie e dei gruppi algebrici.
Numerosi autori ‒ tra cui Ernst Fischer (1911) e Adolf Hurwitz (1933) ‒ hanno compreso come la prova di Hilbert sia connessa a ...
Leggi Tutto
paradosso
paradosso (dal greco pará, «oltre, contro», e dóxa, «opinione») termine applicato, nella sua accezione più ampia, a qualsiasi affermazione o ragionamento che contrasti con l’opinione comune [...] , dei paradossi dell’infinito, dei paradossi algebrici o geometrici, dei paradossi della probabilità o partecipanti A e B si dice finito quando ogni partita ha termine dopo un numero finito di mosse. L’ipergioco fra A e B è definito nel seguente ...
Leggi Tutto
Scienza greco-romana. Diofanto di Alessandria
Roshdi Rashed
Diofanto di Alessandria
Nel corso degli ultimi decenni la nostra conoscenza dell’opera di Diofanto di Alessandria è cambiata in maniera considerevole, [...] , sebbene non sia espressa alcuna esigenza su questo punto. L’Aritmetica, infatti, tratta soltanto numeri razionali positivi, non considera mai i numeri razionali algebrici per se stessi, non più, del resto, di quanto faccia con il criterio di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] è tipico, e le note tra parentesi ne sottolineano gli aspetti più moderni. Sono definiti i numeri complessi e illustrate le loro operazioni algebriche fondamentali, quindi si definisce una funzione olomorfa come una funzione che ha una derivata (non ...
Leggi Tutto
CASTELLI, Benedetto (al secolo, Antonio)
Augusto De Ferrari
Appartenente ad un ramo bresciano della nobile famiglia Castelli, nacque a Brescia o in un comune limitrofo (Trenzano o Botticino Sera, dove [...] più attento a tali questioni. Lo interessavano soprattutto le diverse possibilità dei numeri positivi e negativi nei calcoli algebrici, e il trasferimento di dati rapporti dai numeri alla geometria piana e solida. Anche i suoi studi sul magnetismo e ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Federigo Enriques
Giorgio Israel
La figura di Federigo Enriques occupa una posizione centrale nella storia della cultura italiana tra la fine dell’Ottocento e la Seconda guerra mondiale. Egli fu uno [...] il valore di un approccio geometrico assolutamente libero da ogni metodologia algebrica e analitica, secondo l’idea radicale che la geometria finisce appena si parla di numeri. Il massimo esponente italiano di tale corrente fu Cremona. Dalle sue ...
Leggi Tutto
Storia della civiltà europea a cura di Umberto Eco (2014)
Claudio Fiocchi
Il contributo è tratto da Storia della civiltà europea a cura di Umberto Eco, edizione in 75 ebook
Gli straordinari sviluppi della logica dell’Ottocento vanno visti alla luce della coeva [...] preminenza le leggi di combinazione dei simboli indipendentemente dai loro contenuti specifici. Lo sganciamento dell’algebra dall’esperienza numerica del calcolo consente la scoperta di nuovi oggetti formali (per esempio, i quaternioni, estensione ...
Leggi Tutto
Storia della civiltà europea a cura di Umberto Eco (2014)
Giorgio Strano
Il contributo è tratto da Storia della civiltà europea a cura di Umberto Eco, edizione in 75 ebook
La scoperta dell’analisi infinitesimale è l’approdo di un lungo processo di ricerche, [...] è che la somma di infiniti termini può essere equivalente a un numero definito.
Ai problemi posti dalla ricerca di un cerchio tangente a una qualsiasi curva algebrica in un suo dato punto si applicano vari matematici, servendosi di metodi differenti ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le logiche modali
Fabio Bellissima
Paolo Pagli
Le logiche modali
L'Organon di Aristotele, atto di nascita della logica formale, comprende, oltre [...] aritmetica di Peano. Fu quindi individuata una classe di algebre di Boole arricchite di un operatore che traducesse le già nel periodo presemantico e in un crescendo continuo, a un numero sempre più ampio di calcoli.
Tutto ciò poteva avere due letture ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...