• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
agenda
atlante
il chiasmo
lingua italiana
8291 risultati
Tutti i risultati [8291]
Arti visive [1362]
Biografie [1391]
Storia [878]
Diritto [919]
Archeologia [711]
Geografia [394]
Temi generali [516]
Economia [463]
Religioni [430]
Medicina [378]

Fermat, ultimo teorema di

Enciclopedia del Novecento (2004)

Fermat, ultimo teorema di MMassimo Bertolini di Massimo Bertolini SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] E(Q) dei punti di E definiti su Q. Più precisamente, essa afferma che L(E, s) ammette un prolungamento analitico a tutto il piano complesso; inoltre, l'ordine di annullamento in s = 1 di L(E, s) è uguale al rango di E(Q) (grazie a un teorema di ... Leggi Tutto
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – RELAZIONE DI EQUIVALENZA – POLINOMIO IRRIDUCIBILE – ALEXANDER GROTHENDIECK – ADRIEN MARIE LEGENDRE
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

Riemann, ipotesi di

Enciclopedia della Matematica (2013)

Riemann, ipotesi di Riemann, ipotesi di o congettura di Riemann, congettura formulata nel 1859 da B. Riemann su una particolare distribuzione degli zeri non banali della funzione zeta di → Riemann. Tale [...] banali di tale funzione hanno parte reale uguale a 1/2; se quindi si considera la rappresentazione sul piano complesso (→ Argand-Gauss, piano di) del dominio della funzione, se fosse vera la congettura, tutti gli zeri si troverebbero su una stessa ... Leggi Tutto
TAGS: FUNZIONE DI VARIABILE COMPLESSA – DISTRIBUZIONE DEI NUMERI PRIMI – FUNZIONE ZETA DI → RIEMANN – FUNZIONE GAMMA DI → EULERO – PROBLEMI DEL MILLENNIO
Mostra altri risultati Nascondi altri risultati su Riemann, ipotesi di (1)
Mostra Tutti

Gruppi

Enciclopedia del Novecento (1978)

Gruppi GGeorge W. Mackey di George W. Mackey SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] compatti ℱ. Sia P un polinomio a coefficienti razionali di grado minimo tale che P(ϑ) = 0 e siano ϑ1, ..., ϑr i punti x del piano complesso tali che P(x) = 0 e che x abbia parte immaginaria non negativa. Sia ℱj il corpo dei numeri reali o dei numeri ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI NECESSARIE E SUFFICIENTI – TEOREMA FONDAMENTALE DELL'ALGEBRA – PRINCIPIO DI ESCLUSIONE DI PAULI – LEGGE DI RECIPROCITÀ QUADRATICA

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] dei primi, furono esplorate dal matematico tedesco B. Riemann nel 1859. Riemann dimostrò che ζ(s) può essere prolungata analiticamente all'intero piano complesso come funzione meromorfa tale che ζ(s)−1/(s−1) è intera. Inoltre, se R(s)=π-s/2Γ(s/2)ζ(s ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] di x+y√−1 fu introdotta per la prima volta, e di qui l'idea di integrale curvilineo lungo un cammino nel piano complesso. L'utilità del calcolo dei residui allontanò Cauchy dal problema delle funzioni a più valori, e fu solo per commentare la memoria ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] questi a coppie, Poincaré iniziava con il poligono che, come sosteneva, esisteva o sulla sfera di Riemann, o nel piano complesso, oppure nel disco unitario, a seconda del genere della superficie di Riemann che avrebbe dovuto formare. Là esso veniva ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] unico polo in s=1 di residuo 1. La [22] implica anche l'esistenza di zeri reali nei punti s=−2,−4,−6,…; nel piano complesso non vi possono essere zeri fuori della striscia compresa fra le due rette verticali Re(s)=0 e Re(s)=1. Riemann enunciò, quasi ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] utilizzato in modo così efficace nel calcolo di integrali definiti. Cauchy osservava che nel passare dalla retta reale al piano complesso una funzione di una variabile reale si trasforma in una di due variabili, e quindi, quando si integra, si ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] dei primi, furono esplorate dal matematico tedesco Bernhard Riemann nel 1859. Egli dimostrò che ζ(s) può essere prolungata analiticamente all'intero piano complesso come funzione meromorfa tale che ζ(s)−1/(s−1) è intera. Inoltre se R(s)=π−s/2Γ(s/2)ζ ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] a costruire un processo stocastico in R1 a cui sono associate funzioni di Schwinger che, prolungate nel piano complesso, danno origine a funzioni di Wightman soddisfacenti gli assiomi. Il campo quantistico relativistico corrispondente è definito su ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA
1 2 3 4 5 6 7 8 ... 830
Vocabolario
piano²
piano2 piano2 s. m. [lat. planum «pianura» (propr. neutro sostantivato dell’agg. planus: v. la voce prec.); nel sign. 7 ricalca il fr. plan] (pl. ant. le piànora). – 1. Superficie piana, generalm. orizzontale, ma anche verticale o variamente...
màcchina
macchina màcchina (ant. màchina) s. f. [dal lat. machĭna, che è dal gr. dorico μαχανά, attico μηχανή]. – 1. In senso storico e antropologico, qualsiasi dispositivo o apparecchio costruito collegando opportunamente due o più elementi in modo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali