L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] e 'n-volte connessa' se è necessario un sistemadi n−1 tagli lungo i cicli per renderla semplicemente di orientamento geometrico parlavano dell'integrazione di funzioni definite sulla curva diequazione G(x,y)=0.
Le difficoltà nella comprensione di ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] , che includeva la risoluzione di un sistemadi infinite equazioni lineari in infinite incognite con una specie di induzione e la felice divinazione del risultato di un ardito procedimento di limite, Fourier era in grado di determinare i coefficienti ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] semplici che riguardano la teoria delle equazioni differenziali ordinarie e la teoria della probabilità.
Esempio 1. - Sia dato un sistemadi d'Alembert, cioè un sistema lineare e omogeneo,
con matrice A di elementi αij costanti. Supponiamo che il ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] Sistemidi calcolo evoluti esistono da non meno didi q, poco più lentamente di una potenza di q), nonché una serie di teoremi effettivi sulla risoluzione diequazioni diofantee. Successivamente Naum I. Feldman sostituì nella disuguaglianza di ...
Leggi Tutto
Econometria
Luigi Pasinetti
Guido Gambetta
di Luigi Pasinetti, Guido Gambetta
Econometria
sommario: 1. Definizione. 2. I precedenti storici. 3. La nascita dell'econometria. 4. I maggiori centri econometrici. [...] lavoro principale è del 1874, e quindi il nostro V. Pareto presentarono le loro teorie in termini disistemidiequazioni simultanee. Sia Walras che Pareto avevano avuto una formazione culturale matematica e furono sempre convinti che la matematica ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...]
L'approccio scelto da Hilbert per sviluppare le idee suggeritegli dal lavoro di Fredholm sulle equazioni integrali lo spinse a usare quello che viene oggi chiamato un sistema ortonormale completo di elementi in C[a,b], per associare a una funzione f ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] a partire dalla fine degli anni Settanta per il loro legame con problemi di elasticità non lineare.
L'equazionedi Euler diventa un sistemadi m equazioni alle derivate parziali del secondo ordine nelle m funzioni incognite u1,…,um:
Teoremi ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] troppo lunga per chi non possieda un elenco rovesciato. Alcuni sistemi a chiave pubblica assai semplici e, nello stesso tempo, i suoi teoremi a certe classi, speciali ma significative, diequazioni diofantee, per decidere se vi siano o no soluzioni ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] , che collegano la geometria alla teoria dell'integrazione rendendo possibile lo studio dei più generali sistemidiequazioni lineari in tali spazi.
Un passo decisivo nello sviluppo dell'analisi fu compiuto nel 1922 da Stefan Banach con la creazione ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] Ω indica la frontiera dell'aperto Ω).
Nel primo caso, la [3] diventa un sistemadi m equazioni ordinarie
[9] formula
mentre nel secondo otteniamo un'equazione alle derivate parziali del secondo ordine:
[10] formula
dove uxi indica la funzione ∂u ...
Leggi Tutto
sistema
sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...