Krein Mark Grigorjevich
Krein 〈kràin〉 Mark Grigorjevich [STF] (n. 1907) ◆ [ANM] Teorema di K.-Milman: se K è un insieme convesso compatto contenuto in uno spaziovettorialenormato con x∈k punto estremale, [...] se x=(1-t)x₀+tx₁ con t∈(0,1) e x₀, x₁∈K implica x₀=x₁=x, allora K coincide con l'inviluppo convesso chiuso dei suoi punti estremali ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] retta paralleli).
S. di Banach. È uno s. vettorialenormato, che sia anche completo nel senso che ogni successione P. In modo analogo sono definiti gli intorni di un sottoinsieme dello spazio. Per base di uno s. topologico S si intende una famiglia ...
Leggi Tutto
spazio Lp (O)
spazio Lp(Ω) con Ω sottoinsieme misurabile di Rn, spaziovettoriale delle funzioni ƒ misurabili secondo Lebesgue per le quali l’integrale
Se p ≥ 1, lo spazio è normato, con norma
e completo [...] di → Banach. Se p ∈ (0, 1), lo spazio è ancora vettoriale, ma l’espressione precedente non rappresenta una norma, perché non è soddisfatta la disuguaglianza triangolare. Lo spazio L∞(Ω) costituito dalle funzioni essenzialmente limitate è di Banach ...
Leggi Tutto
spazio topologico duale
spazio topologico duale di uno spazio topologico X*, è lo spaziovettoriale completo X′ (talvolta denotato con X*) costituito dai funzionali lineari e continui su X*. Il valore [...] con il crochet <x′, x> oltre che con x′ (x). Se X* è uno spazionormato, X′ è uno spazio di Banach con la norma
La topologia indotta da questa norma si chiama topologia forte di X′. La topologia debole di X′ invece è la topologia meno fine in ...
Leggi Tutto
spazio l p
spazio l p spaziovettoriale delle successioni x = {ξk} per cui la serie
è convergente. Se p ≥ 1, lo spazio è normato, con norma
e completo in tale norma; è quindi uno spazio di → Banach. [...] Se p ∈ (0, 1), lo spazio è ancora vettoriale, ma non è normato. Lo spazio l ∞ costituito dalle successioni limitate è di Banach con norma
Se 1 ≤ p ≤ q ≤ ∞, risulta l p ⊂ l q, con immersione continua. Se p e p′ soddisfano l’uguaglianza
essi si ...
Leggi Tutto
normatonormato [agg. Part. pass. di normare "dare una norma, rendere conforme a una norma"] [ALG] Spazio n.: spaziovettoriale che sia stato provvisto di una norma. ...
Leggi Tutto
vettorialevettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] particolarizzano la collocazione tra tutti gli spazivettoriali. Una proprietà addizionale che s' spazio propriamente euclideo si può definire la norma di un vettore v come ||v||=(v, v)1/2 (uno spazio v. propriamente euclideo è uno spazionormato ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] ∥ f ∥ = (f ∣ f)1/2 definisce una norma su H. Uno spaziovettoriale H su C così normato si dice ‛spazio di Hilbert' quando (H, ∥•∥) è completo (ossia è uno spazio di Banach). Si può mostrare che ‛ogni' spazio di Hilbert H è isometricamente isomorfo a ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] è l'integrale di f rispetto a μ. Si considerano le misure positive e la norma di una misura. Se E è uno spazio localmente compatto, K(E) indica lo spaziovettoriale delle funzioni numeriche continue in E, a supporto compatto; la misura (di Radon) μ è ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] di funzioni e gli spazi astratti con una struttura algebrica di spaziovettoriale lineare, ma di dimensione infinita e dotati di una struttura topologica basata sul concetto di spazio metrico nel quale sia definita una norma. I principali oggetti di ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
norma
nòrma s. f. [dal lat. norma «squadra» (come strumento) e fig. «regola»]. – 1. In origine, con sign. non più in uso, strumento adoperato da tecnici e operai per tracciare misure e rapporti di linee e di angoli; squadra: fare a norma,...