spazi omeomorfi
spazi omeomorfi spazi vettoriali topologici tra i quali esiste una corrispondenza biunivoca e bicontinua (→ omeomorfismo). ...
Leggi Tutto
In matematica, concetto introdotto nel 1935 da H. Whitney in relazione a problemi di topologia e geometria delle varietà. Ha dato luogo a una teoria che ha avuto un enorme sviluppo, specialmente in connessione [...] agli spazi vettoriali (A. Grothendieck, M.F. Atiyah, F. Hirzebruch) e ha condotto alla costruzione di nuovi invarianti topologici. Una funzione continua p: E→B è un f. con spazio totale E, spazio di base B e spazio fibra F se esiste un ricoprimento ...
Leggi Tutto
In matematica, corrispondenza biunivoca e bicontinua tra due spazi topologici S e S′, tale cioè che: a) a ogni punto P di S associ uno e un sol punto P′ di S′ e viceversa (corrispondenza biunivoca); b) [...] fissato a piacere un intorno I′ di un qualunque punto P′ di S′, esista un intorno I del punto P corrispondente a P′ tale che i corrispondenti dei punti di S che fanno parte di I appartengano tutti a I′, ...
Leggi Tutto
prodotto topologico
prodotto topologico per una famiglia di spazi topologici Xi è il prodotto cartesiano
munito della topologia prodotto. In uno spazio topologico possono essere definite più topologie [...] si stabilisce la relazione d’ordine parziale di finezza: la topologia T2 si dice più fine della topologia T1 se ogni aperto di T1 è anche aperto di T2. La topologia prodotto risulta essere la topologia meno fine che rende le proiezioni pi: X → Xi ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] quale una base di aperti è costituita dai prodotti di coppie di aperti A×A′ (con A⊂S e A′⊂S′).
Una funzione continua tra due s. topologici S ed S′ è una funzione f:S→S′ con la proprietà che la controimmagine di ogni aperto di S′ è un aperto di S (la ...
Leggi Tutto
Gruppi
GGeorge W. Mackey
di George W. Mackey
SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] ogniqualvolta ℴ è aperto. In questo caso g-1(ℴ) indica l'insieme di tutti i q in S1 tali che g(q) sia in ℴ. Gli spazi topologici S1 e S2 si chiamano omeomorfi' se esiste una funzione biunivoca g il cui dominio sia S1, il cui rango sia S2, tale che g ...
Leggi Tutto
equivalenza topologica
equivalenza topologica relazione di → equivalenza definita sull’insieme degli spazi topologici originata dal considerare equivalenti due figure geometriche quando è possibile ottenere [...] equivalenti una retta e una parabola, un triangolo e un quadrato, un cubo e una sfera, mentre non sono topologicamente equivalenti un segmento e una circonferenza, un cerchio e una corona circolare, una sfera e un toro perché i “buchi” non ...
Leggi Tutto
Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] S−T e S, espresse da un’opportuna successione esatta di gruppi e omomorfismi (omologia relativa). Così pure se lo spazio S è il prodotto topologico di due altri spazi S′ e S″, cioè se S=S′×S″, i gruppi di omologia di S si possono calcolare a partire ...
Leggi Tutto
omotopia
omotopia in topologia algebrica, concetto fondamentale, da cui deriva la relazione di equivalenza sull’insieme degli spazi topologici detta equivalenza omotopica. Dal momento che spazi topologici [...] I è l’intervallo chiuso [0, 1] di R. Siano ƒ0: X → Y e ƒ1: X → Y due funzioni continue tra due spazi topologici X e Y e sia X × I lo spazio topologico prodotto. Un’omotopia tra ƒ0 e ƒ1 è un’applicazione continua F: X × I → Y tale che F(x, 0) = f0(x ...
Leggi Tutto
invarianza topologica
invarianza topologica proprietà che non varia su ogni classe di → equivalenza topologica. Gli invarianti topologici possono essere numeri naturali (per esempio, il numero di componenti [...] un tale omeomorfismo non può esistere. Un modo per accertare che un omeomorfismo φ: X → Y non può esistere è trovare un invariante topologico ƒ tale che ƒ(X) ≠ ƒ(Y). Per esempio, dato che il primo gruppo di omologia simpliciale H1(X) di uno spazio X ...
Leggi Tutto
topologia
topologìa s. f. [comp. di topo- e -logia]. – 1. In geografia, lo studio del paesaggio e delle sue caratteristiche per individuare e definire i varî tipi di forme del suolo (l’insieme dei segni che si usano per rappresentare tali...
topologico
topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...