Conformità o equivalenza tra più parti, termini, elementi.
Biologia
Concetto che esprime il rapporto fra organi o strutture morfologiche propri di categorie tassonomiche diverse (fig. 1), ma aventi la [...] di Vn, ciascuno dei quali si riferisce a un valore della dimensione, da zero fino a n. I gruppi di o. sono invarianti topologici, nel senso che se le varietà Vn e V′n sono omeomorfe, i rispettivi gruppi di o. sono isomorfi in ciascuna dimensione.
Ci ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] di un insieme astratto. In entrambi i casi, la classe di funzioni o l'insieme astratto sono dotati di una struttura topologica che permette l'uso dei concetti di limite e di continuità sulla base dell'estensione alla classe di funzioni o all'insieme ...
Leggi Tutto
Tutto ciò che la terra produce o che costituisce il risultato di un’attività umana.
Diritto
La categoria dei p. alimentari, che tende a sostituire quella dei p. agricoli, intesi come frutti naturali, [...] è data dal p. vettoriale); buona parte di essi gode della proprietà commutativa (come il p. scalare, il p. topologico, il p. di convoluzione), mentre in alcuni casi il p. è anticommutativo o alternante (ossia invertendo l’ordine dei fattori ...
Leggi Tutto
Matematico (Dolomieu, Isère, 1869 - Parigi 1951). Professore nelle univ. di Montpellier, Lione, Nancy, fu chiamato nel 1909 a quella di Parigi, dove insegnò calcolo differenziale e integrale, poi (1920) [...] tornò alla teoria dei gruppi continui finiti per approfondirne lo studio, non dal punto di vista differenziale di S. Lie, bensì da quello integrale e, più precisamente, topologico. Sono state pubblicate le sue opere complete in 6 volumi (1952-55). ...
Leggi Tutto
punto fisso
Luca Tomassini
Un punto x di un insieme X tale che F(x)=x per una determinata mappa F:X→X, ovvero di X in sé. Un tale punto si dirà anche punto fisso per F. La dimostrazione dell’esistenza [...] vari teoremi (o principi) di punto fisso. Non sorprendentemente, il caso di maggiore interesse è quello in cui X è uno spazio topologico e F è continua in un senso specifico. Il più semplice, ma non per questo meno importante, tra i teoremi di punto ...
Leggi Tutto
In matematica, nella topologia differenziale, teoria del c. (ideata da R. Thom attorno al 1954): se si considera la totalità delle varietà differenziabili compatte, prive di frontiera e aventi una stessa [...] finito, se invece n=4k il gruppo ha tanti generatori indipendenti quante sono le partizioni di k (➔ partizione). Il problema topologico di calcolare i gruppi di c. è così ricondotto al problema aritmetico, purtroppo non ancora risolto, di valutare le ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] V; i numeri della successione P1,P2,…,Pm−1 sono i numeri di Betti di V. Nell'annunciare le proprie ricerche di topologia, nel 1892 Poincaré sottolineava che i numeri di Betti non sono sufficienti a distinguere le varietà e dava infatti un esempio di ...
Leggi Tutto
Particolare tipo di numeri che rappresentano una generalizzazione dei numeri complessi.
I q. costituiscono un corpo non commutativo e un’algebra non commutativa sul campo dei numeri reali. Introdotti da [...] di sviluppare un calcolo infinitesimale. Ebbene, un celebre teorema di L.S. Pontrjagin (1932) afferma che gli unici corpi topologici connessi e localmente compatti sono il corpo R dei numeri reali, il corpo C dei numeri complessi e il corpo H ...
Leggi Tutto
(v. equazioni, XIV, p. 132; App. III, I, p. 564; IV, I, p. 714)
Ogni anno migliaia di pubblicazioni compaiono nella letteratura scientifica e ci si dovrà quindi limitare a delineare alcune linee essenziali, [...] C. Taubes e S. Donaldson (v. per es. Donaldson 1983), mostrando un'interazione essenziale tra l'analisi non lineare e la topologia. Per un elenco di pubblicazioni sull'argomento, cfr. Brézis 1986a.
Infine non si può dimenticare che molte e. d. sono ...
Leggi Tutto
Fisica
Numero che indica in qual modo le grandezze fondamentali intervengono nelle singole grandezze derivate, individuandone l’unità di misura in funzione delle unità fondamentali. Una certa grandezza [...] dell’unica coordinata. Ciò indica che la d. sopra introdotta è una proprietà di carattere topologico; essa viene anche detta d. topologica per distinguerla da altri tipi di d., introdotte nello studio di strutture geometriche ‘non regolari ...
Leggi Tutto
topologico
topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...
topologia
topologìa s. f. [comp. di topo- e -logia]. – 1. In geografia, lo studio del paesaggio e delle sue caratteristiche per individuare e definire i varî tipi di forme del suolo (l’insieme dei segni che si usano per rappresentare tali...