• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

non commutativo

Enciclopedia on line
  • Condividi

In matematica, si dice di struttura nella quale sia definita un’operazione che non è commutativa (➔ commutativa, proprietà). Tali strutture hanno assunto un ruolo importante nella caratterizzazione della cosiddetta geometria n., che studia le proprietà di spazi funzionali attraverso quelle di algebre n. a essi associate. Esempi di algebre n. sono le algebre di operatori su uno spazio di Hilbert a dimensione finita. In generale, l’associazione a uno spazio funzionale di un’algebra si realizza dimostrando che le proprietà di un insieme di punti di uno spazio possono essere descritte mediante le proprietà di anelli commutativi di funzioni (anelli di funzioni C∞), definite sull’insieme di punti. In questo modo il concetto geometrico di spazio di punti è sostituito da quello di anello delle funzioni definite sullo spazio.

Facendo un’ulteriore astrazione, la geometria n. richiede che l’algebra delle funzioni sia n. ed elimina del tutto il concetto di punto; questa eliminazione, che è fondamentale nelle applicazioni, è alla base della definizione della geometria n. stessa.

L’origine della geometria n. si può far risalire alla fisica quantistica e agli studi di I.M. Gel´fand e M.A. Naimark sulle C*-algebre, una particolare varietà di algebra degli operatori nello spazio di Hilbert. Per es., con la quantizzazione dello spazio delle fasi di una particella in moto unidimensionale si ottiene una struttura matematica che può essere considerata come una generalizzazione n. dello spazio delle fasi. In questa formulazione quantistica, il principio di indeterminazione di Heisenberg implica l’impossibilità di dare una definizione operativa non contraddittoria di un punto dello spazio delle fasi classico, mentre è possibile definire l’algebra delle funzioni n. sullo spazio delle fasi.

Strutture analoghe sono state individuate in vari contesti applicativi, quali le strutture periodiche in campi magnetici, i modelli di matrici nella teoria delle stringhe ecc. Nel processo di quantizzazione di geometrie più complicate del piano delle fasi, le strutture n. appaiono come opportune deformazioni di gruppi di Lie. Nella teoria delle probabilità il concetto di spazio di probabilità è stato esteso introducendo (1996) una struttura n. che porta alla definizione di variabili casuali n., e in quest’ottica è stata dimostrata (D. Voiculescu, 1996) un’importante legge riguardante le matrici casuali.

Un rilevante campo di indagine della geometria n. è la k-teoria delle algebre n. di operatori. Altri stimolanti campi di applicazione della geometria n. sono rappresentati dagli studi di A. Kirillov e B. Kostant relativi alla quantizzazione simplettica, o kählerizzazione, per le equazioni d’onda non lineari e al metodo delle orbite nella teoria delle rappresentazioni dei gruppi.

Vedi anche
campo biologia ● campo morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i campo morfogenetici dell’arto posteriore danno origine ad arti posteriori, quelli branchiali a branchie ecc. La realizzazione delle capacità di ... proprietà commutativa commutativa, proprietà In matematica, si dice che un’operazione binaria gode della proprietà commutativa, proprieta se è tale che a R b=b R a, dove R è il simbolo dell’operazione e a, b gli elementi su cui si opera. Tale proprietà commutativa, proprieta vale, per es., per l’addizione e per il prodotto ... matrice anatomia Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto. matrice dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia e della lunula, e alla cui opacità è dovuto il colorito biancastro di quest’ultima. matrice ... operatore biologia In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone). filosofia In filosofia analitica, un’espressione che serve a determinare un’altra espressione. economia Persona che esegue per conto proprio o di ...
Categorie
  • ALGEBRA in Matematica
  • GEOMETRIA in Matematica
Tag
  • PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG
  • TEORIA DELLE RAPPRESENTAZIONI
  • TEORIA DELLE STRINGHE
  • FISICA QUANTISTICA
  • ANELLI COMMUTATIVI
Vocabolario
commutativo
commutativo agg. [der. di commutare]. – 1. Che commuta o è relativo al commutare: giustizia c., che consiste nel rendere il corrispondente di quello che si riceve. In diritto, contratto c., quello in cui le prestazioni reciproche sono stabilite...
commutare
commutare v. tr. [dal lat. commutare, comp. di con- e mutare «mutare»] (io commùto, ecc.). – 1. a. Sostituire una cosa con un’altra, scambiare fra loro due cose (anticam. anche persone): c. i fattori di una moltiplicazione; la pena di morte...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali