In geometria, a. piano, o più semplicemente a., è una regione di piano compresa tra due semirette uscenti da uno stesso punto. Analogamente, nello spazio, a. solido è una regione dello spazio stesso, variamente delimitata. L’a. piano e l’a. solido sono grandezze supplementari del sistema internazionale SI.
Due semirette a, b, aventi in comune l’origine V dividono il piano in due parti, ciascuna delle quali è un a.; le due semirette si dicono i lati dell’a., l’origine V il vertice dell’angolo. Uno dei due a. si dice convesso, l’altro concavo: nell’a. convesso (fig. A 1) i prolungamenti dei lati cadono fuori dell’a., mentre essi cadono dentro l’a. quando questo è concavo (fig. A 2). In modo naturale si definisce l’uguaglianza di due a.: due a. sono uguali quando sono sovrapponibili. Un a. è generalmente indicato con una lettera minuscola dell’alfabeto greco oppure sovrapponendo il segno ∧ agli elementi che determinano l’angolo.
Due rette d’un piano, tagliandosi in un punto O, formano quattro angoli (convessi) aventi lo stesso vertice O (fig. A 3). Essi possono essere considerati a coppie in due modi diversi: si può accoppiare a ognuno dei 4 a. l’a. che ha per lati i prolungamenti dei lati del primo ( a. opposti al vertice, come α e γ in fig. A 3), oppure un a. che ha con il primo un lato in comune ( a. adiacenti, come α e β in fig. A 3). Due a. opposti al vertice sono sempre uguali. Se accade che i 4 a. formati dalle due rette siano tutti uguali tra di loro, le due rette si dicono perpendicolari (o normali), e ciascuno dei 4 a. si dice retto (fig. A 4).
Un a. tale che i suoi lati siano l’uno il prolungamento dell’altro si dice a. piatto (fig. A 5); si dice a. giro quando i due lati coincidono (fig. A 6). Un a. maggiore del retto, ma minore del piatto, si dice ottuso (fig. A 7); un a. minore di un a. retto si dice acuto (fig. A 8); un a. compreso tra l’a. piatto e l’a. giro è concavo, mentre un a. minore di un piatto è convesso. Se la somma di due angoli è un a. retto, i due angoli si dicono complementari; se è un a. piatto, supplementari; se la loro somma è un angolo giro, replementari; se la loro differenza è un angolo piatto, explementari.
Nella pratica, gli a. si misurano in gradi sessagesimali, talvolta in gradi centesimali. Un grado sessagesimale è la novantesima parte dell’a. retto, che equivale a 90°. L’a. piatto vale allora 180°, l’a. giro 360°. Un grado centesimale o gon è la centesima parte dell’a. retto. Nel sistema internazionale SI si ha una misura intrinseca degli a. usando come unità il radiante; questo è definito come l’a. al centro, in un cerchio, compreso tra due raggi che intercettano sulla circonferenza un arco di lunghezza pari a quella del raggio R (fig. A 8). Poiché 2πR è la lunghezza dell’intera circonferenza, le misure in radianti dell’a. giro, dell’a. piatto e dell’a. retto risultano rispettivamente pari a 2π, π, π/2. Dalla loro proporzionalità diretta discende immediatamente che la misura, α, di un angolo in gradi sessagesimali è legata a quella, ϑ, in radianti dalla relazione:
da cui segue 1 rad = 57°17′45″. In pratica la misura degli a. si effettua con appositi strumenti (goniometro, sestante, teodolite ecc.) graduati per lo più in gradi sessagesimali.
Un a. si può anche pensare come la parte del piano spazzata da una semiretta r che ruoti in uno dei due sensi possibili fino a sovrapporsi a una semiretta s avente la stessa origine di r. Conviene, per distinguere i due casi, considerare come positivo uno dei due possibili sensi di rotazione, per es. quello antiorario, e attribuire agli a. descritti da una semiretta che ruoti in senso antiorario misura positiva, a quelli descritti in senso orario misura negativa. Per es., i due angoli delle fig. A 9 e 10, generati, il primo dalla sovrapposizione di s su r (rotazione antioraria), l’altro dalla sovrapposizione di r su s (rotazione oraria), hanno lo stesso valore assoluto, ma segno opposto.
Anche per poter parlare dell’a. di due rette orientate →r ed →s, uscenti da un punto O, occorre fissare un verso positivo delle rotazioni nel piano (per es. il verso antiorario). Si intende allora per a. di →r con →s (in questo ordine), e si indica con ∧→r →s l’a. descritto dalla semiretta orientata O →r che ruoti in senso antiorario fino a sovrapporsi alla semiretta orientata O →s (fig. A 11). L’a. ∧→s →r (fig. A 12) è naturalmente distinto dall’a. ∧→r →s. Se le due rette →r e →s sono sovrapposte, l’a. ∧→s →r vale 0° ovvero 180° a seconda che gli orientamenti di →r e →s siano concordi o discordi.
Date (fig. A 13) due rette a e b e una trasversale c, gli a. formati da c con a e b hanno nomi particolari; così: 1 e 7, 4 e 6 sono a. alterni esterni; 2 e 8, 3 e 5 a. alterni interni; 1 e 5, 2 e 6, 4 e 8, 3 e 7 a. corrispondenti; 1 e 6, 4 e 7 a. coniugati esterni; 2 e 5, 3 e 8 a. coniugati interni. Perché due rette siano parallele, occorre e basta che: o due a. alterni esterni (interni) siano uguali; o due a. corrispondenti siano uguali; o due a. coniugati esterni (interni) siano supplementari.
Date due rette sghembe, r e s, si definisce a. delle due rette sghembe l’a. formato da r e da una parallela a s per un punto qualsiasi di r (o viceversa).
È l’a. ϕ formato da r con la sua proiezione ortogonale r′ su α (fig. A 14).
È l’a. formato dalle normali ai due piani condotte da uno stesso punto.
Sono gli a. formati dalle tangenti alle curve date nel punto dato.
Si vedano le singole voci ( cerchio, triangolo, poligono ecc.).
Passando dal piano allo spazio la nozione di a. si generalizza in quella di a. solido o sterangolo, che comprende come casi particolari quelle di a. diedro e di angoloide.
Due semipiani α e β uscenti da una medesima retta a (fig. A 15) dividono lo spazio in due regioni, ciascuna delle quali è un a. diedro. I due semipiani α, β si dicono le facce, la retta a lo spigolo o costola del diedro. Agli a. diedri si estendono nozioni e nomenclatura relative agli a. piani; si parla così di diedro convesso e concavo, di diedri opposti allo spigolo ecc. A misura dell’a. diedro si assume la misura della sezione normale del diedro stesso, cioè l’angolo ϕ ottenuto sezionando il diedro con un qualunque piano (γ in fig. A 15) normale allo spigolo.
Sia AB ... EF un poligono convesso di n lati e V un punto non appartenente al suo piano. Conducendo per V le semirette VA, VB, ..., VF, restano determinati n a. convessi, A∧VB, B∧VC, …, E∧VF, F∧VA e n diedri (convessi) aventi come spigoli le semirette in questione. La parte di spazio comune a questi n diedri si chiama angoloide (convesso); il punto V è il vertice, le semirette VA, ..., VF sono gli spigoli o costole, gli a. A∧VB, …, F∧VA le facce dell’angoloide. In fig. A 16 è rappresentato un angoloide a 6 facce. L’angoloide si può anche pensare formato da tutte le semirette che vanno da V ai punti del poligono (sia interni che del contorno). Un angoloide con tre facce si dice, in particolare, triedro.
È l’a. solido nella sua accezione più generale: se O è un punto qualsiasi dello spazio (fig. A 17) S una superficie sferica di centro O e s una qualsiasi porzione di S, il luogo delle semirette uscenti da O e passanti per i singoli punti di s (contorno compreso) è uno sterangolo di vertice O. Il rapporto σ/r2, tra l’area σ di s e il quadrato del raggio r della sfera non dipende da r: infatti ogni altra sfera di centro O è tagliata dallo sterangolo secondo una superficie s′, simile a s e tale che il rapporto σ′/r′2 fra la superficie σ′ di s′ e il quadrato del raggio r′ della nuova sfera è ancora uguale a σ/r2. Tale rapporto può quindi essere assunto come misura dello sterangolo. Se σ=r2, il precedente rapporto vale 1; lo sterangolo corrispondente, che prende il nome di steradiante, si assume come unità di misura degli sterangoli. Per es., a un ottante di sfera corrisponde un a. solido che misurato in steradianti vale π/2.
Le misure di a. trovano larga applicazione in antropometria. Per es., alcune caratteristiche morfologiche del cranio si valutano mediante gli a. craniometrici, come quello facciale (o di prognatismo), che permette di stabilire la forma del profilo verticale sul piano mediano. Non meno importanti sono gli a. che si misurano sulla pelvi (quale l’a. d’inclinazione dello stretto superiore del bacino); quelli che si misurano sulle ossa lunghe degli arti, come gli a. di torsione (dell’omero, del femore ecc.), che esprimono la posizione reciproca delle due estremità di tali ossa, ecc.
In fisica si definiscono numerosi a. che caratterizzano fenomeni meccanici (per es. l’a. di attrito statico), elettrici (a. di fase), ottici (a. di incidenza, di rifrazione, di riflessione, di Brewster ecc.). Di particolare rilievo nella fisica delle interazioni deboli è l’ a. di Cabibbo, costante universale che interviene nella descrizione di processi con cambiamento di stranezza.